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Abstract Introduction: Alzheimer’s disease diagnosis requires postmortem visualization of amyloid and tau
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deposits. As brain atrophy can provide assessment of consequent neurodegeneration, our objective
was to predict postmortem neurofibrillary tangles (NFT) from in vivo MRI measurements.
Methods: All participants with neuroimaging and neuropathological data from the Alzheimer’s Dis-
ease Neuroimaging Initiative, the National Alzheimer’s Coordinating Center and the Rush Memory
and Aging Project were selected (n 5 186). Two hundred and thirty two variables were extracted
from lastMRI before death using FreeSurfer. Nonparametric correlation analysis andmultivariable sup-
port vector machine classification were performed to provide a predictive model of Braak NFT staging.
Results: We demonstrated that 59 of our MRI variables, mostly temporal lobe structures, were
significantly associated with Braak NFT stages (P, .005).We obtained a 62.4% correct classification
rate for discrimination between transentorhinal, limbic, and isocortical groups.
Discussion: Structural neuroimaging may therefore be considered as a potential biomarker for early
detection of Alzheimer’s disease–associated neurofibrillary degeneration.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Background

Dementias are more likely to be associated with multiple
confounding etiologies; unsurprisingly, concordance with
clinical syndromes is not perfect [1]. Thus, the definitive
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diagnosis of its leading cause, Alzheimer’s disease (AD),
can only be established following postmortem examination,
which has long been and remains the gold standard. The
“ABC” staging scheme is the recommended assessment
method [2], and requires the neuropathological gradation
of (1) diffuse beta-amyloid plaques following the scale of
Thal et al [3]; (2) neurofibrillary tangles (NFT) according
to the Braak & Braak [4] scale; and (3) neuritic plaques
(NP) according to the CERAD scale of Mirra et al [5].
Yet, these characteristic pathological changes are thought
to occur decades before initial clinical manifestations
[6,7]. This highlights the evident need for the development
of in vivo diagnostic tools and standardized methods that
could be used to detect the presence of AD pathology in
preclinical disease stages. Noninvasive neuroimaging
techniques have the potential to address this issue by
imer’s Association. This is an open access article under the CC BY-NC-ND
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providing structural and functional information in the human
living brain that could be correlated to one or many of the
aforementioned ABC pathological signs. Among these
modalities, magnetic resonance imaging (MRI) appears to
be one of the safest and most accessible methods to
visualize nervous tissue inside the cranial cavity with
sufficient precision. Indeed, high-resolution structural MRI
allows for the quantification of tissue losses, whereas recent
sophisticated machine-learning tools have been applied dur-
ing MRI postprocessing to analyze brain tissue. Based on
these technologies, regional MRI metrics may therefore be
used as a candidate biomarker to predict underlying AD
pathology.

Among all pathological features of AD, we identified
NFT pathology as the strongest correlate of atrophy on
MRI [8], which remains the only significant feature even af-
ter accounting for amyloid pathology. Intraneuronal paired
helical filaments of hyperphosphorylated tau protein aggre-
gates are characteristics of AD and their deposition follows a
well-defined, predictable trajectory (assessed by Braak stag-
ing [4,9]) that has been shown to correlate with the pattern of
regional brain atrophy observed on structural MRIs of AD
patients [10–19]. Emerging from the transentorhinal region
(stage I), the immunochemistry-defined progression of tau
pathology gradually involves the entorhinal region and hip-
pocampus (stage II), the neocortex of the fusiform and
lingual gyri (stage III), neocortical associative areas (stage
IV), frontal, superolateral, and occipital territories and
the peristriate region (stage V), and finally the secondary
and primary sensory areas, including the striate area
(stage VI) [9].

Previous structural MRI studies in pathologically
confirmed AD subjects, although generally based on limited
sample sizes, have shown that volumes of the entorhinal and
hippocampal cortices are significantly correlated to postmor-
tem changes in AD. However, most studies seem to have
restricted their focus only on specific medial temporal lobe
areas predominantly affected in AD [10,12,13,17,19–22],
otherwise on measurements of whole-brain atrophy
[15,23]. To our knowledge, only one study did focus on
Braak stages as a regionally unbiased analysis approach
using voxel-based analyses [16]. Hence, most of these previ-
ous reports have not accurately reproduced the complex
spatiotemporal pattern of NFT spread as observed in AD
brains. Moreover, brain volume loss at early stages of the dis-
ease is usually relatively subtle and heterogeneously distrib-
uted over many brain regions [24–29], and may therefore be
confounded by complex patterns of brain structural changes
related to normal aging [30].

Our work attempted to provide a more extensive regional
analysis of the correlation between structural MRI to NFT
staging, with the aim to examine the predictive value of ante-
mortem MRI metrics on established postmortem measure
of AD-associated neurofibrillary degeneration. Based on
our current knowledge and exhaustive literature review
[8], we hypothesized that machine-learning classification
techniques applied to structural MRI data would allow us
to predict Braak NFT staging in the living brain, accounting
for the complex patterns of spatial changes related to normal
aging and AD.
2. Methods

2.1. Participants

Participants included in this study were obtained from
three large North American data sets (i.e., the Alzheimer’s
Disease Neuroimaging Initiative [ADNI], the National Alz-
heimer’s Coordinating Center [NACC], and the Rush Mem-
ory and Aging Project [MAP]). The ADNI (adni.loni.usc.
edu) was launched in 2003 as a multicenter public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD, and regrouping participants from 63 sites
across the United States and Canada. The primary goal of
ADNI has been to test whether serial MRI, positron emission
tomography, other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the
progression of mild cognitive impairment and early AD. The
NACC data set (www.alz.washington.edu) was established
in 1999 and provides data from patients collected in the
AD centers funded by the National Institute of Aging, U.S.
NACC’s Uniform Data Set used for the present study started
more precisely on September 2005. The MAP (www.radc.
rush.edu) is a community-based longitudinal study of aging
that was carried out at Rush UniversityMedical Center (Chi-
cago, IL). It started in 1997 and was funded by the National
Institute of Aging, U.S. The NACC and ADNI cohorts
included both normal and cognitively impaired individuals
at baseline. All participants in MAP had no known dementia
before enrollment. All combined, ADNI, NACC, and MAP
provide data from more than 30,000 participants. All partic-
ipants underwent extensive clinical evaluation by both a
physician and a neuropsychologist with expertise in evalua-
tion and management of elderly patients presenting with
cognitive impairment, including medical history, physical
examination, and neuropsychological testing. Up-to-date in-
formation can be found at respective websites of each data
set. In this study, we first included all participants with con-
current antemortem MRI scan and postmortem neuropatho-
logical examination available as of January 12, 2017
(n5 204). After initial MRI quality control, eighteen partic-
ipants were excluded because of poor quality scans. In total,
we report results based on 186 subjects from three indepen-
dent data sets. Respective institutional review boards
approved the three studies, and written informed consent
was obtained from each participant. Approval from our local
ethic committee was also obtained for the present study.

2.2. MRI acquisition and image processing

Image analyses were conducted using 3D T1-weighted
antemortem anatomical images obtained from multiple cen-
ters using 1.5 T and 3.0 T MRI scanners (Siemens, Philips,
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and GE Medical Systems) with MPRAGE sequences. MRI
data were automatically segmented from the closest images
to death (i.e., last scan acquired during the study) with Free-
Surfer software version 5.3 (Laboratory for Computational
Neuroimaging, Martinos Center for Biomedical Imaging;
https://surfer.nmr.mgh.harvard.edu/) based on the complete
Desikan-Killiany-Tourville atlas [31] and part of the
ex vivo atlas for entorhinal and perirhinal cortices [32,33].
We performed initial visual inspection of segmentations
for quality control, and performed minor manual
corrections of regional segmentation, mainly concerning
the dura, where needed. We then extracted surface,
thickness, and volume measurements from all available
cortical structures and volume measurements from
subcortical structures, in both hemispheres, for a total of
232 MRI-derived variables available for cross-sectional an-
alyses. Cortical regions included total cortex, rostral and
caudal anterior cingulate, posterior cingulate, isthmus cingu-
late, pars opercularis, pars orbitalis, pars triangularis, rostral
and caudal middle frontal, superior frontal, medial and
lateral orbitofrontal, precentral, paracentral, postcentral,
supramarginal, inferior parietal, superior parietal, perical-
carine, precuneus, cuneus, lingual, lateral occipital, insular,
entorhinal, perirhinal, fusiform, parahippocampal, inferior
temporal, middle temporal, superior temporal, and trans-
verse temporal cortical areas. Subcortical regions included
corpus callosum, accumbens nucleus, amygdala, hippocam-
pus, caudate nucleus, pallidum, putamen, thalamus proper,
ventral diencephalon, total brain stem, and lateral, third,
and fourth ventricles.
2.3. Neuropathological assessment

We used available neuropathological data previously ob-
tained during postmortem examination by neuropatholo-
gists. NFT pathology graded according to Braak staging
was selected as the main dependent variable of interest.
Briefly, neuropathological assessment was performed on
one hemisphere (left side for most cases), which was fixed
in paraformaldehyde and embedded in paraffin. Tissue
blocks were then dissected from 0.5-1 cm slabs. Sections
from standard blocks (i.e., mid-frontal, superior/middle tem-
poral, inferior parietal, occipital, entorhinal and hippocam-
pus; as described in the study by Montine et al [2]) were
stained with tau or phosphorylated-tau antibodies or silver-
based histochemistry and assessed for Braak NFT staging
as described earlier. The other half of the brain was frozen
for further biochemical studies. For more details, please
refer to the respective neuropathological protocols of the
three data sets.
2.4. Descriptive data analysis

A statistical approach was selected for preliminary
descriptive analyses of the data. Statistical analyses were
conducted using RStudio (http://www.rstudio.com/) version
1.0.143. We examined group differences between partici-
pants with Braak stages 0 to VI using Kruskal-Wallis test
by ranks for continuous variables and Pearson c2 for cate-
gorical variables. We chose to regroup subjects into three
classes: transentorhinal (I-II), limbic (III-IV), and isocortical
(V-VI) stages. This simplified version of Braak stratification
is presumed to minimize the impact of subjective patholog-
ical scoring and to improve inter-rater reliability [34]. The
number of subjects with Braak 0 (n 5 9) was insufficient
to reach minimal conditions for statistical analyses and
machine-learning model training. The control group was
therefore incorporated to the subclinical transentorhinal
class for this study. This merger is concordant with the
“B” component of current “ABC” guidelines [2] in which
no distinction is made between B0 (Braak 0) and B1 (Braak
I and II) as it does not affect the level of AD neuropathologic
change (i.e., not, low, intermediate, or high). Braak stages
0 through II are also considered as pathological findings
consistent with typical aging [35]. Nonparametric analyses
were further performed to assess the correlation between
regional MRI metrics and Braak NFT stages using Spear-
man’s rank correlation test. A 0.005 significant threshold
(P-value) was fixed to correct for multiple comparisons.
2.5. Classification-based machine-learning algorithms
and validation

In the experiments, we conducted three binary classifi-
cation tasks (i.e., Braak 0-I-II/Braak III-IV, Braak 0-I-II/
Braak V-VI and Braak III-IV/Braak V-VI) as well as a mul-
ticlass classification task (i.e., Braak 0-I-II/Braak III-IV/
Braak V-VI). To assess the reliability of proposed method,
we used a 10-fold cross-validation strategy, such that
randomly 10% of data is considered a test set and the rest
data (i.e., 90%) as a training set. In the training set of
each iteration, the features (including sex, age at death,
time interval between last MRI and death, apoE4 allele sta-
tus andMRI regional metrics) were ranked on the basis on a
mutual information [36] strategy, as it has previously
shown a robust performance in comparison with alternative
feature ranking methods [37]. The features with higher
mutual information weights are more informative. The
number of top-ranked features for all experiments was
specified by using 20% of total variance in the training
set, to limit the number of features and avoid over-
determination. It is noted that the optimal number of
selected features may be different in each iteration. The
optimal subset derived from a training set was applied to
the respective test set. The classification results were aver-
aged over the rounds of validation by the means of accuracy
(ACC), sensitivity (SEN), specificity (SPE), and area under
the receiver operating characteristics curve (AUC). To
implement the classification, a standard support vector ma-
chine algorithm with linear kernel implemented in MAT-
LAB 2016 was used. Fig. 1 illustrates the outline of the
proposed ranking-based classification method.

https://surfer.nmr.mgh.harvard.edu/
http://www.rstudio.com/


Fig. 1. Features ranking classification. This outline illustrates the proposed ranking-based classification method from a mutual information strategy.
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Furthermore, to correct for morphometric differences be-
tween scanners, we tested whether scanner manufacturer
and magnetic field strength variables could improve the
prediction of the models.
3. Results

3.1. Participants characteristics

Among all 186 subjects included in this study, 24% come
from ADNI (n 5 44), 45% from NACC (n 5 84), and 31%
from MAP (n5 58). Caucasians (n5 175) represent 94.1%
of our sample. The apoE4 status was available for 177 of our
186 participants. Two alleles were present in 5.4% of our
sample, whereas one allele was found in 32.8%. The
apoE4 status of the remaining subjects was either negative
(57.0%) or unknown (4.8%). Distribution of Braak NFT
groups across samples from the three data sets can be visu-
alized in Supplementary Material 1. Participants were given
a final clinical diagnosis of intact cognition (n 5 44), mild
cognitive impairment (n 5 42), probable AD (n 5 86), or
other dementia (n 5 14) before death. Participants were
aged 45 to 102 years at time of death (mean
age 5 84.3 years; SD 5 10.0) and underwent 1.5 T
(n5 157) or 3.0 T (n5 29) brainMRIwithin a mean interval
of 2.6 years (SD 5 2.0) before death. The manufacturer of
the scanner used for MRI acquisition was either Siemens
(n 5 40), Philips (n 5 10), or GE (n 5 136). More details
on participant characteristics are summarized in Table 1.
3.2. Correlations between MRI metrics and NFT
pathology

The correlation analysis between regional metrics and
Braak NFT stages (0 to VI) showed significant associations
(P, .005) for 59 of the 232 MRI variables. We found a rela-
tionship between several antemortem thickness and volume
measurements and postmortem neurofibrillary degeneration
within the temporal lobe, including entorhinal, perirhinal,
fusiform, parahippocampal, inferior, middle, and superior
temporal regions and the hippocampus. Multiple limbic
(i.e., insula, amygdala, accumbens nucleus, posterior cingu-
late, and isthmus of cingulate gyrus), parietal (i.e., supramar-
ginal gyrus, precuneus, and inferior and superior parietal
cortices) and occipital regions (i.e., lingual gyrus and lateral
occipital cortex) were also significantly correlated with NFT
pathology. Other associated variables which reached statisti-
cal significance included volumes from the rostral middle
frontal cortex and the ventricular system. No significant cor-
relation was found between NFT pathology and any surface
measurement across the brain. Absolute values of correla-
tion coefficients for significant variables varied between



Table 1

Participants demographics

Characteristic Controls (n 5 44) MCI (n 5 42) AD (n 5 86) Others (n 5 14)

No. (%) of females 26 (59) 22 (52) 33 (38) 6 (43)

Median (range) education, years 15 (8, 23) 15 (0, 22) 16 (4, 20) 12 (6, 16)

Median (range) last MMSE, /30 28 (14, 30) 25.5 (15, 30) 16 (0, 28) 20 (3, 28)

Median (range) age at last MRI, years 87 (71, 102) 85.5 (50, 97) 82 (50, 94) 70.5 (43, 89)

Median (range) age at death, years 89 (72, 102) 86 (53, 99) 85 (52, 98) 76 (45, 92)

Median (range) interval MRI-death, years 2.0 (0, 5.9) 2.1 (0, 7.8) 2.0 (0, 9.8) 3.4 (0.7, 8.3)

Median (range) Braak NFT stage, /6 3 (1, 5) 4 (0, 6) 5 (0, 6) 2 (0, 6)

Median (range) CERAD NP score, /3 1 (0, 3) 2 (0, 3) 3 (0, 3) 0.5 (0, 3)

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; MMSE, Mini–Mental State Examination; MRI, magnetic resonance imaging;

NFT, neurofibrillary tangles; NP, neuritic plaques.
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0.21 and 0.43. The strongest association was found with the
right hippocampus volume. The results are shown in Fig. 2.
3.3. Classification performance

Based on the best predictors for classification between
each two Braak groups, three binary classifiers were devel-
oped. The 20 features selected with the highest frequency
across training sets to be included in our models are pre-
sented in Supplementary Material 2. Individuals with Braak
0-I-II were distinguished from Braak III-IV with 70.2% ac-
curacy (SEN 50.0%, SPE 82.9%). Participants with Braak
III-IV were differentiated from Braak V-VI with 69.0% ac-
curacy (SEN 71.4%, SPE 66.7%). Finally, subjects with
Braak 0-I-II were separated from Braak V-VI with 71.6% ac-
curacy (SEN 52.3%, SPE 83.3%). The resulting AUC for the
three classifiers were 0.77, 0.64, and 0.69, respectively
(Fig. 3). Performance parameters are summarized in
Table 2. Our multiclass classification model applied to our
test set provided 62.4% accuracy for discrimination between
the three NFT pathological groups. The confusion matrix of
predicted versus observed pathological groups is presented
in Fig. 4. A similar model including clinical features only
(i.e., age, sex, apoE4 status, and time interval between
MRI and death) was tested and provided lower prediction ac-
curacy, with only 45.2% of correctly classified cases (see
Supplementary Material 3). Because adding scanner manu-
facturer and magnetic field strength in the models did not
improve the prediction accuracy (Braak 0-II vs. III-IV:
69.0%; Braak III-IV vs. V-VI: 74.0%; Braak 0-II vs. V-VI:
69.6%; multiclass: 60.0), these variables were not retained
for prediction.
4. Discussion

The objective of the present study was to predict postmor-
tem Braak NFT staging based on antemortem anatomical
MRI of the brain. Using FreeSurfer segmentation and
machine-learning techniques, the results showed that
anatomical MRI could predict with a 62.4% accuracy NFT
stages categorized into three groups (either 0-I-II, III-IV,
or V-VI).
4.1. Anatomical considerations

Concordant with our expectations, several regional MRI
metrics were significantly negatively correlated to NFT pa-
thology, with lower volumes associated with higher Braak
stages. Interestingly, these structures spatially correspond
to those where tau is deposited during the course of AD, a
pattern consistent with previous findings of regional atrophy
reported in a voxel-based morphometry study from Whit-
well et al. [16]. Effectively, several temporal, limbic, and pa-
rietal structures, as well as a few occipital areas (also known
to be affected in late stages of AD) were identified, consis-
tent with well-described Braak staging topography. Less
expectedly, the right rostral middle frontal volume also
showed significant association with NFT pathology. A
similar finding was also reported for the caudal region of
the middle frontal gyrus in another study examining atrophic
patterns of the frontal-subcortical circuits in mild cognitive
impairment and AD subjects [38]. While the left middle
frontal gyrus is known to take part in language production,
the right middle frontal gyrus is believed to be involved in
attention and working memory processes [39], as well as
in episodic memory retrieval [40], which is typically
impaired in AD. As already described in the literature, ven-
tricular volumes also showed significant positive correlation
with neurofibrillary degeneration, with larger lateral ventri-
cles associated with higher Braak stages. This nonspecific
MRI finding is observed in several neurodegenerative condi-
tions and most probably reflects the severity of subcortical
atrophy.

Cortical surface measurements did not show any signifi-
cant correlation with NFT deposition in the present study,
suggesting that cortical volume loss in AD is mainly due
to decreased cortical thickness instead of surface area
shrinking. Brain MRI–extracted surfaces are therefore un-
likely to be good predictors of underlying AD pathology.

Despite a large number of structural brain metrics iden-
tified as being significantly correlated with Braak staging,
we found surprisingly low correlation coefficients when
compared with widely reported strong associations between
volumetric MRI measurements and NFT pathology in the
current literature, reaching absolute correlation values of
up to 0.80 [8]. Possible explanations include large



Fig. 2. Spearman’s rank correlations heat map.
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discrepancies between the three multicenter studies and
their respective MRI acquisition and pathological examina-
tion protocols, as well as the variability in participants’
characteristics from the three study samples.
4.2. Value of MRI for distinguishing Braak NFT groups

Accumulating evidence suggests that MRI is an increas-
ingly relevant modality from which to extract biomarkers for
the diagnosis of AD on a neurobiological basis in living per-
sons [41]. Based on these assumptions, we developed a sup-
port vector machine classifier to predict Braak NFT staging
from in vivo brain structural MRI metrics. Our classification
model provides a global accuracy of 62.4% to distinguish
between transentorhinal, limbic, and isocortical Braak
stages, corresponding to current recommendations from
the worldwide-used “ABC” neuropathological guidelines
[2] for tau pathology assessment. This modest predictive



Table 2

Performance parameters of the three binary classifiers

Classifier

Sensitivity

(%)

Specificity

(%)

Accuracy

(%) AUC

Braak 0-I-II versus

Braak III-IV

50.0 82.9 70.2 0.77

Braak III-IV versus

Braak V-VI

71.4 66.7 69.0 0.64

Braak 0-I-II versus

Braak V-VI

52.3 83.3 71.6 0.69

Abbreviation: AUC, area under the receiver operating characteristics

curve.

Fig. 3. Receiver operating characteristics curves of the three binary classi-

fiers.
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power was expected and can in part be explained by the pres-
ence of concomitant pathologies that also result in regional
brain atrophy, such as TDP-43 [42,43] and vascular
changes [19,23,44,45], and that were not taken into
consideration. Indeed, AD is not a one-protein entity and
is most often found to present with mixed pathology. Our
study is, however, demonstrative of the possibility to predict
the neuropathological staging of AD-related neurofibrillary
degeneration from cross-sectional MRI scans acquired dur-
ing life. The present work is therefore in line with recent
collaborative, although debated, effort toward a biological
definition of AD [46]. Importantly, this achievement was
made possible through simple automated segmentation and
machine-learning methods for analysis of individual brain
MRI scans. With the growing interest in learning-based stra-
tegies, our results support the hypothesis that more advanced
machine-learning approaches hold promise of higher predic-
tion performance and thus great potential for early detection
of AD pathology. In vivo assessment of NFT pathology, the
best correlate of both neurodegeneration [8] and cognitive
decline [47] in AD, is of particular relevance with regard
to the ongoing development of tau-targeted therapies, which
could not only benefit in AD, but also in amyloid-negative
tauopathies (e.g., primary age-related tauopathy [48]) and
mixed pathologies.
Fig. 4. Normalized confusion matrix. This classification table shows the

performance of the multiclass model to discriminate between NFT patho-

logical groups within our test set. Abbreviations: AUC, area under the

receiver operating characteristics curve; NFT, neurofibrillary tangles.
4.3. Advantages and clinical significance of in vivo
pathological staging of AD

With the rapid aging of populations worldwide, AD is
now considered a growing public health and socioeconomic
issues, justifying current effort toward the development of
quantitative and standardized biomarkers for potential clin-
ical utilization in early detection of AD. Herein, we pro-
posed a new approach to the in vivo automatic
stratification of AD pathological changes based on MRI
data. Similar imaging-based techniques could provide addi-
tional reliable information to standard neurological and
cognitive examination in the clinical workup of dementia.
The avenue of accurate diagnosis tools raises the possibility
to ensure earlier and more adequate patient care and man-
agement, including initiation of current symptomatic phar-
macological treatments (i.e., acetylcholinesterase
inhibitors and NMDA receptors antagonists) in their thera-
peutic window of optimal efficiency, discussing care plan-
ning and medico-legal considerations with the patient
while they retain the cognitive ability to do so, and refer
them and their caregivers to dedicated support groups.
Notably, automatic imaging diagnosis tools could allow
for a better selection of participants eligible for clinical trials
of new disease-modifying targeted therapies before they
have crossed the step of irreversible brain tissue damage.
The use of in vivo MRI, already recommended as an inves-
tigative method of choice to rule out other conditions asso-
ciated with cognitive decline, could potentially provide
additional standardized inclusion information indicating
the presence of AD neuropathological changes, as demon-
strated in the present study.
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4.4. Strengths and potential limitations of the study

Our study design presents multiple strengths. First, our
sample was selected through multiple independent data
sets from prospective multicentric studies with extensive ex-
amination of clinical, radiological, and neuropathological
parameters. Considering that individuals with postmortem
examination and premortem MRI data are very scare, we
presented here one of the largest sample size in
radiological-pathological studies to our knowledge.
Although recruitment of patients from memory clinics can
result in some selection biases, the MAP data set was
collected from a population-based study cohort. Moreover,
the entire cognitive spectrum (i.e., from cognitively normal
to clinical AD) was covered in our study, allowing to gener-
alize the prediction to any cognitive state.

The use of MRI modality represents a safe, well tolerate,
precise, and widely available imaging technique. We pro-
vide here an extensive brain regional analysis which is
necessary to increase accuracy of diagnostic tools at the in-
dividual level. Moreover, we propose a method based on
automatic segmentation with a well-developed worldwide-
used validated tool (i.e., FreeSurfer), which was demon-
strated to afford more reproducible brain mapping with
decreased intra- and inter-rater variability when compared
with manual brain segmentation and hand-drawn regions
of interest [49,50]. Furthermore, this study was designed
using nonlinear model classification to provide a more
comprehensive neuroimaging analysis approach which
best captures the subtleties of the brain abnormalities for
neuropathological stratification of NFTs associated with
AD. We also trained our model using 10-fold cross-
validation to ensure that a correct classification rate was
evaluated on MRI scans not previously used by the classifier
and feature selector. This way, we provide more reliable es-
timates of generalization and predictive value.

The present work also presents several limitations and po-
tential biases. Among these, our analyses were conducted on
a sample from a North American population, and thus a pre-
sumed majority of Caucasians. Our results may therefore not
apply to a more ethnically diversified population. Regarding
postmortem assessment, there is a part of subjectivity exist-
ing despite well-defined international guidelines [51,52]. A
possible asymmetry of pathological lesions distribution
and brain dysfunction across the two cerebral hemispheres
has also been suggested by some authors [53–57]. Because
the examined hemisphere lateralization was not always the
same in the three cohorts, aleatory pathological grading
may have affected our predictive ability. MRI volumetry
can also be influenced by magnetic field strength and
scanner manufacturer. However, our results showed that
including these variables in the models did not improved
prediction. This is consistent with our previous results
showing that these variables explain a significant, but
minor amount of variance: only 1%, 3%, and 7% of the
total variance for cortical surface, volume, and thickness,
respectively [58]. Furthermore, we did not examine the abil-
ity of our MRI-based SVM classifier to distinguish between
AD subtypes [18] or atypical dementias. Notably, some sub-
jects included in this study may also have tau-associated
conditions other than typical AD (e.g., AD variants, primary
progressive aphasia, primary age-related tauopathy) or co-
morbid pathology (e.g., mixed dementia), which are known
to be associated with different patterns of regional brain at-
rophy. Because of the limited number of participants with
Braak 0 available in our three original cohorts (n 5 9), we
were unable to consider a group pathologically free in our
predictive model. Finally, classification accuracy may have
been affected by our cross-sectional study design, with var-
iable interval time between last MRI and death that did not
take into consideration the variable rate of disease progres-
sion and could not properly catch the dynamic process of
brain atrophy observed in neurodegenerative diseases.
5. Conclusions

In summary, our findings suggest that Braak NFT staging
can be predicted to some extent from in vivo cross-sectional
MRI metrics using automatic brain segmentation and
classification-based machine-learning techniques. These re-
sults are encouraging regarding the development of a sup-
portive diagnostic tool for AD on an individual patient
basis and a potential read-out for tau-focused interventions.
The present study and recent advances will hopefully moti-
vate future research on the use of structural MRI markers for
identification of dementia-related pathological changes in
the living brain.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using PubMed database. As the definitive diag-
nosis of Alzheimer’s disease (AD) classically
requires postmortem assessment of key neuropatho-
logical features, our work is in line with current col-
lective effort toward the development of reliable
biomarkers to detect pathological changes in preclin-
ical stages of the disease. Early diagnosis of AD is a
strongly represented research field in the literature,
as cited in the present work.

2. Interpretation: Our findings suggest that structural
MRI can potentially be used as a supportive
biomarker for early diagnosis of AD in the living
brain by predicting neurofibrillary degeneration.

3. Future directions: This article highlights the need for
additional studies focusing on predictive modeling
with more extensive training to provide higher clas-
sification performance. Similar studies based on lon-
gitudinal data could potentially catch the
spatiotemporal patterns of brain atrophy associated
with neurofibrillary tangles deposition. Association
with molecular imaging classifiers could also be of
extreme relevance for future clinical application.
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